Upgrading and Shared Prosperity:
Some Insights from Micro Research

Eric Verhoogen

Columbia University

Brasilia, July 1, 2015
Introduction

▶ There is broad agreement that innovation and productivity improvements in manufacturing are a key ingredient in economic growth.

▶ Important point from Mark’s talk: not all innovation is new-to-the-world.
 ▶ All forms of upgrading and the firm level can contribute to growth.

▶ Key question 1: How can we promote upgrading?
▶ Key question 2: What are the links between upgrading and shared prosperity?
 ▶ Within sectors, firms that do more upgrading also tend to pay higher wages.
 ▶ Direction of causality unclear.

▶ Here I will talk about 5 insights into these questions from my micro research on manufacturing firms in developing countries.
Insight 1: Input quality matters for output quality

A. Output prices, hollow brick (ladrillo hueco)
log real output price, dev. from year means
slope=-0.028, s.e.=0.032

B. Input prices, common clay, paid by producers of hollow brick
log real input price, dev. from year means
slope=0.026, s.e.=0.073

Fig. 1 from Kugler & Verhoogen, RESstud 2012.
Insight 1: Input quality matters for output quality

A. Output prices, bar soap
slope=0.055, s.e.=0.025

B. Input prices, refined rendered suet, paid by producers of bar soap
slope=0.110, s.e.=0.038

C. Input prices, unrefined rendered suet, paid by producers of bar soap
slope=0.103, s.e.=0.039

Fig. 2 from Kugler & Verhoogen, REStud 2012.
Insight 1: Input quality matters for output quality

- On average, larger, more-productive firms use higher-quality inputs, produce higher-quality outputs than smaller firms.
 - Colombian manufacturing overall more like bar soap than like hollow bricks.

- Industrial upgrading requires upgrading of entire complex of final-good producers and input suppliers.

- Imported inputs tend to be higher-quality, may be important for facilitating quality upgrading of final goods (Kugler & Verhoogen, AER P&P, 2009).

- Related idea: producing new varieties of outputs may require new varieties of inputs (Goldberg et al., 2010)
Insight 2: Exports $\uparrow \rightarrow$ Quality \uparrow, Wages \uparrow

- New Beetle, almost all exported.

- Old Beetle, almost all sold domestically (produced until 2003).

Insight 2: Exports $\uparrow \rightarrow$ Quality \uparrow, Wages \uparrow
Insight 2: Exports $\uparrow \rightarrow$ Quality \uparrow, Wages \uparrow

- Técnicco: 9 yrs. education, 2003 starting wage \simUS$11/day.

- Especialista: 12 yrs. education, 2003 starting wage \simUS$18/day.
Insight 2: Exports $\uparrow \rightarrow$ Quality \uparrow, Wages \uparrow

App. Fig. IVb: Log white-collar wage

- Non-parametric regressions, variables deviated from industry-year means.
- Similar patterns hold for ISO 9000 certification.
Insight 2: Exports ↑ → Quality ↑, Wages ↑

App. Fig. Vb: Changes in log white-collar wage

- Non-parametric regressions, variables deviated from industry-year means.
- Similar patterns hold for ISO 9000 certification.
Insight 3: Exports $\uparrow \rightarrow$ Wage premia \uparrow

Source: Frías, Kaplan & Verhoogen, Unpub. 2011.
Insight 4: Adoption not Automatic

- Ongoing project with Atkin, Chaudhry, Chaudry and Khandelwal, 2015.
- Setting: Soccer-ball cluster in Sialkot, Pakistan
 - \(\sim 30 \) million balls/year, almost all exported.
 - 40% of world production, 70% within hand-stitched segment (WSJ, 2010).
1st Stage: Glue Cotton/Polyester to Artificial Leather
2nd Stage: Cut Hexagons and Pentagons
3rd Stage: Print Logos/Designs on Panels
4th Stage: Stitch Panels around Bladder
Existing Cutting Technology

Standard “buckyball” design: 20 hexagons, 12 pentagons.

For standard ball, almost all firms use 2-hexagon and 2-pentagon “flush” dies.
Existing Cutting Technology (cont.)

Hexagons tessellate. \(\sim 8\% \) of rexine wasted.
Existing Cutting Technology (cont.)

Pentagons don’t. ~ 20-24% of rexine wasted.
Origin of Idea

In a YouTube video of a Chinese factory producing the Adidas Jabulani ball, I noticed a different layout of pentagons.
Origin of Idea (cont.)

Fig. 7. Maximum density double-lattice packing with regular pentagons.
Origin of Idea (cont.)

Or the Wikipedia Pentagons page:
Blueprint

Annalisa Guzzini (an architect, also my wife) and I developed a blueprint for a 4-pentagon die to implement the optimal packing.

- 44mm-edge pentagons: \(\sim 250 \) with old die vs. 272 with ours.
- 43.5mm-edge pentagons: \(\sim 258 \) vs. 280.
The “Shamyla” Die
Die Purchases by Firm Z

- Second-largest by employment in Sialkot (~2,200 employees).
- No-drop group, late responder.
- As of March 2014, using offset die for ~100% of production.
Adoption as of Aug. 2013

<table>
<thead>
<tr>
<th></th>
<th>Tech Drop</th>
<th>Cash Drop</th>
<th>No Drop</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td># ever active firms</td>
<td>35</td>
<td>18</td>
<td>79</td>
<td>132</td>
</tr>
<tr>
<td># ever responded</td>
<td>35</td>
<td>17</td>
<td>64</td>
<td>116</td>
</tr>
<tr>
<td># currently active and ever responded</td>
<td>32</td>
<td>15</td>
<td>59</td>
<td>106</td>
</tr>
<tr>
<td># traded in</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td># ordered new die (beyond trade-in)</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td># received new die (beyond trade-in)</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td># ever used new die (>1000 balls, conservative)</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td># ever used new die (>1000 balls, liberal)</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Insight 5: Worker Buy-In Matters

<table>
<thead>
<tr>
<th>firm</th>
<th>no orders to try on</th>
<th>too busy</th>
<th>doubt profitable</th>
<th>waiting for others to prove value</th>
<th>waiting for others to iron out kinks</th>
<th>cutters unwilling</th>
<th>printing problems</th>
<th>other production issues</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Numbers indicate order of importance indicated by respondent.
- Sample is round-4 respondents who have had die in their factory but are not currently using it.
Insight 5: Worker Buy-In Matters

- Why were cutters resisting?
 - Most employees paid piece-rate and new technology slows them down, at least initially.
 - Cost savings accrue to owner.
 - In absence of changes to labor contract, effective wage falls.

- A few owners changed labor contracts, but most did not.
 - Either they simply did not realize that a change would be desirable, or
 - they found it too costly relative to expected benefits of technology.
Insight 5: Worker Buy-In Matters

- We ran a second experiment in firms we had given technology to:
 - In some firms, we offered lump-sum bonus equal to 1 month salary to cutter (and printer), if they could demonstrate competence using the technology in presence of owner.
 - Returned in one month to do test. All passed.
 - Had significant effect on adoption:
 - Half of firms that could have responded ended up adopting.
 - None in control group in short term, one in medium term.
- One generalization we think we can draw: workers need to expect to share in gains to adoption in order for adoption to be successful.
Conclusion

- Some (tentative) lessons for Brazil:
 - Quality upgrading is an important part of innovation, broadly defined, within firms.
 - Upgrading of final goods requires access to high-quality inputs, both foreign and domestic.
 - Upgrading products and productivity also requires “upgrading” the workforce:
 - In part this requires finding new higher-skilled workers.
 - But in larger part it requires motivating and training the existing workforce.
 - Labor relationships (and labor-market institutions) matter for technology adoption/productivity improvement.
Conclusion

- Direction of causality between upgrading and shared prosperity (i.e. wages, employment) still an open question.
 - Standard view: innovations arrive exogenously, change skill demand in firm.
 - Alternative view: innovations arise endogenously, in part through worker input. Workers have to have incentives to share knowledge, ideas, good will.

- Results from Mexico, Pakistan provide some evidence for alternative view. But there is still a lot of work to do.
Conclusion

This seems a promising direction for future work:

- Minimum wage study
- Evaluation of innovation-policy interventions.
 - What are effects of innovation on wages, employment at firm level?
 - Is there an interaction of policies and labor-market conditions in generating innovation?

