Smart Industry Fieldlab 3DMedical:
connecting **facilities, knowledge** and **expertise** on 3D printing and medical imaging at the **Utrecht Science Park** to form a strong **innovation cluster** together with private **partners** from the Netherlands and abroad, with the purpose of creating **innovations** for **patient-specific healthcare**: from surgical models to bioprinted implants.
Facilities

The Fieldlab consists of three labs at different locations on Utrecht Science Park:

1. **3D Facelab UMC Utrecht**
 clinical applications for dental and facial surgery

2. **Utrecht Biofabrication Facility**
 3D (bio)printing with biomaterials

3. **Protospace and 3D Printlab HU**
 agile prototyping, technical development and education.
Technology and applications within 3DMedical

- 3D print hardware
- Medical 3D print materials
- Medical Imaging for printing
- Workflow automation
- Bio-materials
What’s in it for F(o)unding Partners?

- Inspiring content for **professional education**
- Contribute to the **regional focus areas**
- Access to clinical practice through UMCU and other hospitals
- New **applied** research projects
- Research **funding**: public and private
- Excellent and meaningful **education**
- **PR value and positive and innovative image**
- Sponsoring of 3D printing equipment
- **Spin-off** companies
- Research **funding**
- **PR value and positive and innovative image**
- New public private partnerships
- Sponsoring of 3D printing equipment
- **State of the art** clinical care with 3D printing
- Contribute to value based healthcare with **new treatment strategies**
- Pioneer in 3D printing for healthcare
- **Spin-off** companies
- **Royalty** income
Possible collaboration with other Fieldlabs

7. Multimaterial 3D printing
Aims at the development of next generation multimaterial 3D print technologies and integrated datamanagementsystems.

14. 3D Makers Zone
Aims at the combination of 3D Printing, Robotics, Internet of Things and Blockchain to enhance production processes.
Examples of projects

Bone MRI
the first medical imaging technique visualizing both bone and soft tissue,
without the use of harmful radiation.
Proximal junctional failure due to neurofibromatosis
February 1st 2017: good reduction

- **Failure** of posterior material is a matter of time
- Conventional rods or graft not an option due to deformation

- Need for maximal strong anterior strut
- That **exactly follows** the crooked spine and does not impinge on heart and lungs
- That integrates with bone
- Allows **size adaptation** to position it under tension

But lack of anterior support
July 2017: insertion via right lateral approach

- Perfect fit of the implant and screws
- 2mm undersized due to positioning
- Recovered well
- Patient is walking and goes to school
Utrecht Biofabrication Facility: 3D printing with biomaterials

Aim of HydroZONES
hyaline cartilage regeneration by tissue mimetic implants
Thank you for your attention!